Modeling the Tensile Strains of Non-uniform Fibers
نویسنده
چکیده
The maximum strain experienced by the thinnest segment of a non-uniform fiber governs fiber breakage, yet this maximum strain can not be obtained from a normal single fiber test. Only the average strain of the whole fiber specimen can be obtained from a normal single fiber tensile test. This study has examined the relationship between the average strain, the maximum strain and the degree of fiber non-uniformity, expressed in coefficient of variation (CV) of fiber diameters along fiber length. The tensile strain of irregular fibers has been simulated using the finite element method (FEM). Using this method, average and maximum tensile strains of non-uniform fibers were calculated. The results indicate that for irregular fibers such as wool, there is an exponential relationship (i.e. CV b ave e a max ) between the ratio of average breaking strain and maximum breaking strain ( max ave ) and the alongfiber diameter variation (CV). The strain ratio decreases with the increase of the along-fiber diameter variation.
منابع مشابه
Modeling the Tensile Behavior of Fibers with Geometrical and Structural Irregularities
Virtually all fibers exhibit some dimensional and structural irregularities. These include the conventional textile fibers, the high-performance brittle fibers and even the newly developed nano-fibers. In recent years, we have systematically examined the effect of fiber dimensional irregularities on the mechanical behavior of the irregular fibers. This paper extends our research to include the ...
متن کاملMechanical Properties of Irregular Fiber (Invited Review Paper)
Irregularities are inherent to virtually all fibers, including the conventional textile fibers, the high-performance brittle fibers and newly developed nano-fibers. These irregularities can fall into two main categories: dimensional or geometrical irregularity (external) and structural irregularity (internal). For natural fibers such as wool, diameter variation along fiber length is atypical ex...
متن کاملHygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere
In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differen...
متن کاملInvestigation of Tensile Characteristics of an Epoxy Matrix Com-posite with Uni-Directional and Hybrid Tissue Natural Hemp Fibers
Using natural hemp fibers to reinforce the tensile characteristics of polymer matrix composites is investigated in this article. The fibers were applied to the epoxy matrix in unidirectional and hybrid tissue forms. After preparation of standard tensile stress test specimens via manual layup, the standard tensile test was done. Young’s modulus, ultimate tensile stress, and the amount of absorb...
متن کاملFully Distributed Modeling, Analysis and Simulation of an Improved Non-Uniform Traveling Wave Structure
Modeling and simulation of communication circuits at high frequency are important challenges ahead in the design and construction of these circuits. Knowing the fact that the lumped element model is not valid at high frequency, distributed analysis is presented based on active and passive transmission lines theory. In this paper, a lossy transmission line model of traveling wave switch (TWSW) i...
متن کامل